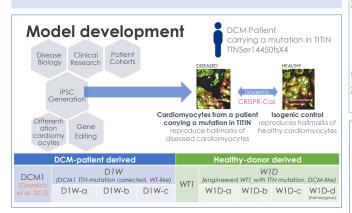


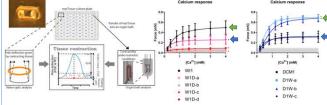
A Deep Learning framework for the High Throughput/High Content Screening of Dilated Cardiomyopathy (DCM)

Nicolas Wiest-Daesslé^{1*}, Eriona Heta², Angelica Roa², Kalina Radoynovska¹, Amandine Thibaudeau¹, Aurore Vuidel¹, Christina Jacob¹, Arnaud Ogier¹, Laurent Brino¹, Peter Sommer¹, Wolfram-Hubertus Zimmermann^{2,3*} and Juyong Yoon¹

1. Ksilink, Strasbourg, France. *nicolas.wiestdaessle@ksilink.com 2. myriamed, Göttingen, Germany. *wolfram.zimmermann@myriamed.com


strasbourg, France. <u>"nicolas wiestadessie@ksilink.com</u> 2. myriamea, Gottingen, Germany. <u>"woltram.zimmermann@myriami</u> 3. Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University, Göttingen, Germany.

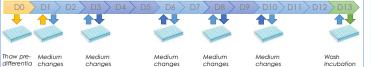
Introduction

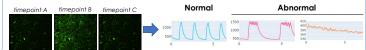

With a prevalence of 4:10,000, dilated cardiomyopathy (DCM) is the most common hereditary heart disease, characterized by dilatation of one or both ventricles and impaired systolic and diastolic function. Numerous mutations have been identified to be causal for the development of DCM. TITIN-truncating variants account for up to 20% of the genetic DCM cases.

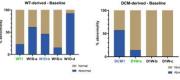
To recapitulate the cellular DCM-pathology in a cellular model compatible with high throughput image analysis, we generated isogenic iPSC lines with either introducing a TTN-truncating mutation (AT insertion in exon 326) in wild-type (WT \Rightarrow W1D) or correcting the mutated TTN from a patient (D \Rightarrow D1W) using CRISPR-Cas9 gene editing. These four cell lines were then functionally characterized by measurement of force of contraction (FOC) in Engineered Human Myocardium (EHM) along with assessing the calcium cycling by calcium flux assays.

We then developed conditions enabling confocal fluorescent imaging of the cellular sarcomeric structures by immunostaining of alpha-actinin and cardiac troponin T.

3D-functional characterization (EHM) Calcium response Calcium response Calcium response Calcium response


DCM-like cell lines:


DCM1 (patient derived) and **W1D-b** (engineered from WT1 cells) share similar 3D functional profiles.


WT-like cell lines:

WT1 (donor derived), D1W-a and D1W-b (corrected from DCM1 cells) share similar 3D functional profiles.

2D-functional characterization (Ca Imaging)

DCM-like cell lines: DCM1 (patient derived) and W1D-b (engineered from W11 cells) share similar 2D functional profiles.

0.5µM Fluo8

Wash Timelapse

❖ WT-like cell lines:

WT1 (donor derived) and D1W-a (corrected from DCM1 cells) share similar 2D functional profiles.

The data collectively demonstrates that careful selection of phenotypically variable cell lines is required for disease modelling.

Deep Learning Model

The presented results are based on an Efficient Net B7 architecture, with minor adjustments, on the tasks.

The Deep Learning tasks is split into two application targets:
a) a classification task to discriminate between cell lines,

- Activation: Softmax
- Loss: Cross Entropy

b) a 2D embedding task with selected landmarks for each cell types

- Activation: LogCosh
- Loss: Mean Squared Error

Inputs:

tad calls

(D24) and

- small cropped areas of the acquired images (256x216),
- · 3 channels Data Nuclei (Hoechst), a-actinin, t-Troponin,
- · Crops are centered on nuclei
- Crops are selected with respect to the amount of expressed a-actinin and t-Troponin in the underlying area.

The training set consisted in 2000 cells per conditions picked from 5 wells out of 42 from a single plate. The remaining data from this plate is used for validation.

Deep Learning Training / Validation

The **training** occurred on 4 Tesla V100 GPUs
The convergence is obtained after 60 Epochs,
with a training accuracy of 99.8% and validation of 97.3%

Further testing was performed with other plates exhibiting high classification rates even with "unseen" data (i.e. from other plates and experimental noise).

The embedding, was an effective game changer for the training experiment

The observed effects, apart from a raise in validation score, are:

• A regularizing effect

An analysis tool for engineered cells selection

We are still analyzing the use of the embedded space for distance analysis between

samples in order to get a more understandable metric.

Other embedding strategies (i.e. knowledge driven and unsupervised) are under investigation, to better control the underlying spaces.

We are also investigating the neural networks saliency on the images, in order to grasp where the features come from, and how they are related to the phenotypes of the cells. Tests were performed through GradCAM algorithm, in order to compute heat maps from images.

Finally, we also performed an ablation studies of the approach, mainly removing the Nuclei channel from the CNN, in order to assess the approach with data originating mainly from the sarcomeres structures. The training and validations, showed similar learning patterns, but reaching lower values (Train 88.2%, Validation 90.8%).

Well Level			Tile Level		
	DCM	WT		DCM	wr
DCM1	88.10%	11.90%	DCM1	78.86%	21.14%
WT1	0%	100%	WT1	15.27%	84.73%
W1D-b	97.62%	2.38%	W1D-b	75.64%	24.36%
D1W-a	3.57%	96.43%	D1W-a	31.58%	68.42%

Conclusion

Among the CRISPR-Cas edited cell clones generated, 3D and 2D functional characterization guided us into selecting two pairs of comparable functional behavior. On one hand, **DCM1** (patient derived) and **W1D-b** (TTN mutation engineered in WT1 cells) exhibited similarly impaired contractility in a 3D Engineered Heart Myocardium assay, while **WT1** (healthy donor) and **D1W-a** and **D1W-b** (corrected TTN mutation from DCM1 cells) displayed comparable 3D behavior. On the other hand, calcium cycling confirmed that both **DCM1/W1D-b** and **WT1/D1W-a** were responding similarly in baseline cycling and under beta-adrenergic stress (chronic isoprenaline exposure model). We have then developed an immunofluorescence assay in 384-well plates based on the calcium imaging protocol, staining for both alpha-actinin and troponin-T. These images generated datasets on which we successfully developed, trained and validated our Deep Learning model, leading to an accurate classification of the cell lines

Our next steps will be to assess different pharmacological treatments and optimize the assay to allow for high throughput/high content imaging assay.

References

Tiburcy et al. "Defined Engineered Human Myocardium with Advanced Maturation for Applications in Heart Failure Modelling and Repair" 2017 Circulation.

Gramlich et al. "Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy" 2015 EMBO Mol. Med.

Tan and Le "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" 2019 arXiv e-prints.

Bardes et al. "VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning" 2021 arXiv.