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Introduction

Parkinson's disease (PD) is a heterogeneous movement disorder caused by
environmental and genetic risk factors or mutations In specific genes.
Pathological characteristics of PD include the progressive loss of midbrain
dopaminergic neurons (MDANs) and often the appearance of Lewy bodies,
cytoplasmic inclusions containing aggregated a-synuclein (aSyn) protein. The
Glycine to Serine substitution at position 2019 (G2019S) in the leucine-rich
repeat kinase 2 gene (LRRK?2) has been associated with PD. One hypothesis is
that LRRK2 G2019S causes defects in mitochondrial biology, additionally to
iInduce mMDAN loss by increasing the levels of phosphorylated aSyn, leading to its
aggregation.

The goal of this study was therefore to develop a robust machine learning
(ML) methodology sensitive enough to detect phenotypic variations based on
genetic, but also to identify chemical compound inducing phenotypic changes.
Our work outlines a novel strategy to use IPSC-derived mDANs from LRRK2
mutation carriers for Imaging-based disease modelling by computationally
combining multiple disease relevant phenotypes.
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Machine Learning (ML) strategy to classify neurons based on
multiple image-derived cellular features

“Unseen” conditions such as novel cell lines or tested chemical compounds can be
mapped relative to the two reference classes.

—— Z Factor Training Set, Avg = 0.45
Z Factor Testing Set, Avg = 0.43
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» Machine Learning is used to highlight discriminating features between the two
populations
» ML allows to identify relevant Parkinson Disease vs. healthy phenotype
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phenotype. We are currently setting up a small molecular screening protocol using 3-class LDA analysis for hit identification.
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